33 41 00 Permanent Stormwater Treatment System

1. Applicability
 1.1. Projects with “Construction Activities” as defined in Minn. R. 7090.0080 that are to be constructed on University of Minnesota property in the State of Minnesota shall comply with this standard for design and permitting of permanent stormwater treatment systems.
 1.2. Pavement rehabilitation that does not disturb the underlying soils (e.g., mill and overlay or grind and pave projects) is not construction activity.

2. Permanent Stormwater Treatment System Design Parameters
 2.1. Use Table 1 to determine if a Stormwater Treatment Design Worksheet (Appendix M) is required.
 2.2. Use Table 2 to determine if the Construction Activity is considered linear or non-linear.
 2.3. Use Table 3 to determine the design requirements of the permanent stormwater treatment system.
 2.4. When connecting to storm sewer systems owned by another jurisdiction, utility connection permits may be required by that jurisdiction. This may require the design to meet additional permanent stormwater treatment requirements that are not listed in Table 3.

Table 1: Permanent Stormwater Treatment System Required

<table>
<thead>
<tr>
<th>Construction Activity Disturbed Area¹</th>
<th>Construction Activity is part of a common plan of development² that is greater than 1 acre of disturbed area</th>
<th>Permanent Stormwater Treatment System Requirements</th>
<th>Stormwater Treatment Design Worksheet Required (Appendix M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 1 Acre</td>
<td>N/A</td>
<td>See Table 3</td>
<td>Yes</td>
</tr>
<tr>
<td>< 1 Acre</td>
<td>Yes</td>
<td>See Table 3</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>None</td>
<td>No</td>
</tr>
</tbody>
</table>

¹ Includes linear projects
² Common plan of development as defined by the MPCA (https://www.pca.state.mn.us/sites/default/files/wq-strm2-22.pdf)
Table 2: Linear and Non-Linear Construction Activity Examples

<table>
<thead>
<tr>
<th>Project Type</th>
<th>Construction Activity</th>
<th>Example Construction Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Linear</td>
<td>• New Building</td>
<td>• Adding an addition onto an already existing building</td>
</tr>
<tr>
<td></td>
<td>• Building Addition</td>
<td>• Building a new building</td>
</tr>
<tr>
<td></td>
<td>• Plaza</td>
<td>• Regrading an area that disturbs the underlying soils and results in a change in the topography</td>
</tr>
<tr>
<td></td>
<td>• Parking Lot</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Regrading</td>
<td></td>
</tr>
<tr>
<td>Linear</td>
<td>• Road</td>
<td>• Reconstructing an existing roadway, disturbing under the base layer</td>
</tr>
<tr>
<td></td>
<td>• Sidewalk</td>
<td>• Digging a trench to install a new chilled water pipe line</td>
</tr>
<tr>
<td></td>
<td>• Trail</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Utility Line</td>
<td></td>
</tr>
</tbody>
</table>
Table 3: Permanent Stormwater Treatment System Design Requirements

<table>
<thead>
<tr>
<th>Project Type (See Table 2)</th>
<th>Construction Activity is inside an Urban/Non-Urban Area boundary<sup>1</sup></th>
<th>Impervious Area</th>
<th>Water Quality Volume Calculation</th>
<th>Rate Control<sup>2</sup></th>
<th>Pollutant Load Reduction<sup>3</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>Sum of new and reconstructed impervious is greater than or equal to 1 acre</td>
<td>1” x (New Impervious + Reconstructed Impervious)</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Non-Linear</td>
<td>Sum of new and reconstructed impervious is less than 1 acre</td>
<td>None</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Non-Urban</td>
<td>Net increase in impervious area is greater than or equal to 1 acre</td>
<td>1” x (New Impervious + Reconstructed Impervious)</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Net increase in impervious area is less than 1 acre</td>
<td>None</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>Sum of new and reconstructed impervious is greater than or equal to 1 acre</td>
<td>Whichever is larger: 1” x New Impervious OR 0.5” x (New Impervious + Reconstructed Impervious)</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sum of new and reconstructed impervious is less than 1 acre</td>
<td>None</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Linear</td>
<td>Net increase in impervious area is greater than or equal to 1 acre</td>
<td>Whichever is larger: 1” x New Impervious OR 0.5” x (New Impervious + Reconstructed Impervious)</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Net increase in impervious area is less than 1 acre</td>
<td>None</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

¹https://umn-egis.maps.arcgis.com/apps/View/index.html?appid=6f53c64bdbdb44b5a2b4a2ebbe85a92

²Rate control requirements per Standard 33 40 00 always apply

³TMDL requirements always apply
3. Design of Permanent Stormwater Treatment Systems

3.1. Permanent Stormwater Treatment Systems must prevent or reduce water pollution after construction activity is completed.

3.2. All Permanent Stormwater Treatment Systems must be designed by a professional engineer.
 a. The Stormwater Treatment Design Worksheet (Appendix M) shall be completed by the system designer.

3.3. Water Quality Volume:
 a. Must treat the water quality volume if required per Table 3.
 b. Volume reduction practices must be considered first when designing the permanent stormwater treatment system.
 c. Volume reduction practices may be prohibited by Minn. R. 7090.0080. Refer to Item 20.9 in the Minnesota Pollution Control Agency Small MS4 General Permit MNR040000 (November 16, 2020 issuance date). Volume reduction practices may be prohibited by the UMN due to proximity to underground structures, facility program, or other regulatory prohibitions.
 i. If volume reduction practices are prohibited, the water quality volume shall be treated via other practices.
 ii. For projects where the full volume reduction requirement cannot be met on-site, the project shall document the reasons in the Stormwater Treatment Design worksheet (Appendix M).
 iii. UMN EHS Contamination Screening Checklist is required when infiltration practices are proposed.

3.4. Rate Control:
 a. Must provide the following rate control if required per Table 3.
 i. Site discharge shall not exceed existing conditions for the 2-year, 10-year, or 100-year storm events.
 b. Refer to Division 33 40 00 Stormwater Utilities, storm sewer design standards for other rate control requirements.

3.5. Pollutant Load Reduction:
 a. Must provide the following pollutant load reduction if required per Table 3.
 i. TSS: 80% reduction in Total Suspended Solids for the water quality volume.
 ii. TP: No net increase in Total Phosphorus for the water quality volume.

3.6. Discharges to Impaired Waters with a USEPA-Approved Total Maximum Daily Load (TMDL) that includes an Applicable Waste Load Allocation (WLA):
 a. Must meet applicable requirements in Section 22 of the Minnesota Pollution Control Agency Small MS4 General Permit MNR040000 (November 16, 2020 issuance date).

3.7. Rainfall and event distribution data:
 a. All Permanent Stormwater Treatment Systems shall be designed using the following rainfall and distribution data.
 b. Rainfall Data:
Building Standards
Division 33-41 Permanent Storm Water Treatment System

i. NOAA Atlas 14 rainfall data
c. Event Distribution:
i. UMTC Campus: NRCS MN MSE 3 24-hour storm distribution
 ii. All other UMN Properties: SCS/NRCS Type II 24-hour storm distribution

4. Submittals
 4.1. Reference UMN CPM Design Deliverable guidelines for submittal requirements.
 4.2. Predesign:
 a. Stormwater Treatment Design Worksheet (Appendix M)
 4.3. 30% CD/Schematic Design
 a. Stormwater Treatment Design Worksheet (Appendix M)
 b. UMN EHS Contamination Screening Checklist (if infiltration practices are proposed)
 4.4. 60% CD/Design Development
 a. Stormwater Treatment Design Worksheet (Appendix M)
 b. UMN EHS Contamination Screening Checklist (if infiltration practices are proposed)
 c. Drainage Area Map (proposed and existing)
 d. Proposed Storm Utility Site Plan
 e. Stormwater Calculations (submit for any proposed Stormwater Treatment System)
 f. Appendix K (Draft)
 4.5. 95% CD/Permit Set
 a. Stormwater Treatment Design Worksheet (Appendix M)
 b. UMN EHS Contamination Screening Checklist (if infiltration practices are proposed)
 c. Drainage Area Map (proposed and existing)
 d. Proposed Storm Utility Site Plan
 e. Stormwater Calculations (submit for any proposed Stormwater Treatment System)
 f. Appendix K (Final)
 g. Specifications
 4.6. Construction:
 a. Shop Drawings, Engineer of Record approved
 4.7. Post-Construction:
 a. Shop Drawings, Engineer of Record approved
 b. Proprietary Systems Operations and Maintenance Plan
 c. As-Builts

5. Permits
 5.1. Utility Permit
 a. Reviewed by UMN Civil Engineer in conjunction with BCD.
 b. Proposed stormwater treatment system must be approved by UMN Civil Engineer prior to submitting for permits.
 5.2. Other permits may apply.